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Data-driven science 

¨  Nothing new, cf. Kepler, Darwin 
¨  Automatically detecting patterning in vast data sets 

has become a norm in various scientific fields, e.g. 
astronomy, genomics, neuroscience 

¨  It doesn’t make sense to think of “data-driven” and 
“hypothesis-driven” as mutually exclusive 



Content Analysis 

¨  Content analysis = counting instances of linguistic 
forms that have meaning with respect to a conceptual 
framework and non-textual phenomena 

¨  Four main steps: 
1.  Select non-textual phenomena to investigate 
2.  Determine an appropriate conceptual framework 
3.  Establish a mapping between concepts and linguistic 

forms that can be counted 
4.  Identify significant statistical results in the frequency 

counts 



Data-driven content analysis 

¨  As textual material becomes more diverse and 
bigger then data-driven becomes more relevant:  
¤  researchers cannot assume that they know the material, i.e. 

they can make fewer assumptions in steps 1-3 (especially 3) 
¤  opportunity/need to challenge existing theory and 

conceptual frameworks and coding schemes 
¨  A partial solution? Automatic data-driven 

techniques incorporated into “discovery tools” to: 
¤  provide manageable views of large text corpora 
¤  elucidate interesting aspects of the content 
¤  stimulate new hypotheses 
¤  challenge/confirm existing conceptual frameworks  
¤  inform the development of coding schemes 



What is required of techniques for 
data-driven content analysis? 

¨  They should elucidate interesting characteristics of the 
content 

¨  They should be well understood and reliable 
¨  They should not rely on prior linguistic resources such 

as lexicons and grammars, for both practical and 
methodological reasons: 
¤  the diversity of material means techniques should be 

portable across domains, text types and languages, without 
the cost of generating resources each time 

¤  prior linguistic resources introduce biases: better to minimise 
assumptions about the domain and the language used 



Current techniques 

¨  Techniques for unsupervised clustering and scaling mostly 
meet these requirements but are limited by treating texts 
as bags of words: 
¤  most meaning is lost 
¤  can can only compare text-level features 

¨  Corpus linguistics has established techniques for exploring 
corpora in a data-driven manner – frequency lists, 
keyword lists, n-grams, collocations, concordances: 
¤  Useful for an overview of frequent content, and some information about 

word sequences and co-occurrences  
¤  However, still quite a shallow view of language, and these techniques 

generate a lot of data to inspect 

¨  Language visualization can help to understand word co-
occurrence, but it relies on text analysis to provide a 
manageable view 





An example of data-driven content analysis 

¨  The material was a corpus of blogs related to climate 
change: 
¤  about 3000 blogs, 1.4m blog posts, 400m words 
¤  focused on 330,000 sentences containing either “climate change” or “global 

warming” 

¨  Interesting and challenging for content analysis: 
¤  climate change is a complex and contested issue 
¤  diverse sub-topics, perspectives and opinions 
¤  polarized (sceptics / acceptors) 
¤  framed in different ways, e.g. science, politics, national / local issues 
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1. Select non-textual phenomenon 

¨  It was decided in advance that the focus would be on 
how people think about climate change and the 
future: this was motivated by a review of the 
literature on climate change communication. 



2. Select conceptual framework 

¨  We did not make reference to any previously existing 
conceptual frameworks relating to how climate 
change is thought about. 

¨  Rather, the framework was developed inductively 
based on data-driven content analysis. 



3. Establish mapping between concepts 
and linguistic forms 

¨  We first identified frequent linguistic forms that 
could be related to representations of the future,  
¤ Frequency lists 
¤ Word clusters 
¤ Sorted concordances 

¨  Then, with some close reading, these forms were 
interpreted to propose nine categories of meaning 
representations: “(1) sustainability, (2) value-laden 
positive, (3) value-laden negative, ….” 



3. Establish mapping between concepts 
and linguistic forms 

¨  Frequency lists: we inspected the 1500 most 
frequent words and identified 11 that could be 
part of future representations, e.g. “future’, “risks”, 
“opportunities”; the 11 selected words had 30,000 
instances in total  

¨  Word clusters and sorted concordances: to give a 
more condensed view of the co-texts around the 
identified words à 42 patterns 



Part of a sorted concordance 



Three of the induced patterns 



4. Identify significant statistical results 
in the frequencies of linguistic forms  

¨  The established mapping between the categories 
and linguistic forms (i.e. pattern-filler combinations) 
facilitates quantitative analyses and identification 
of samples for close reading. 

¨  For example, to test the hypotheses that: 
“accepting” climate change blogs would be more 
concerned with the future than “sceptical” blogs. 



Critique 

¨  Data-driven techniques provided a manageable view of a large 
text corpus, and, in concert with manual interpretation of the 
results and close reading of samples, they assisted in developing 
a conceptual framework and a mapping between concepts and 
countable linguistic forms.  

¨  It should be noted that, in this example, the mapping between 
categories and their textual realisations is not comprehensive – 
rather, as the result of a frequency-led analysis, we expect that it 
captures the most common textual realisations.  

¨  Furthermore, we cannot guarantee that every instance of a 
certain linguistic form is being used to convey the same meaning – 
we assume that most of them are, based on the close reading of 
some examples. 

¨  The method that identified salient patterns and provided a 
condensed view of their co-texts relied on manual analysis of lists 
of word clusters and sorted concordances, which was somewhat 
ad hoc and time consuming.  





Local grammar induction  
(Salway and Touileb 2014) 
¨  Aim: to generate an overview of the content that preserves 

more linguistic structure – and hence meaning – than is 
possible with bag of words approaches 

¨  Main points: 
¤  Highlights distinctive patterning in large unannotated text corpora 
¤  Automatically induces frequent local grammatical structures: these 

characterise what is typically written about key domain terms, 
and may reflect salient information structures 

¤  Does not rely on linguistic resources 
¤  Does rely on repeating patterns in the texts, i.e. constrained 

domain + stylized language à more structure is induced 
¤  Like other unsupervised techniques, the output can be very 

sensitive to small changes in input and parameters 
¤  Work in progress: we don’t fully understand what it captures and 

what it misses; it is computationally intensive 



Example output 

((carbon|(greenhouse gas)|co2) emissions)  

((anthropogenic|manmade|(man made)) 
global_warming) 

((source|emitter|emitters|producers) of 
greenhouse_gases) 



Example output 

((to (combat|minimize|tackle)) climate change) 

(((due to)|(caused by)) ((climate change)|(global 
warming)))  



Example output 

((of global warming) (was|are|is))  

(in (order|(the (atmosphere|recessions)))) 



Example output 

(((greenhouse gases)|emissions|gases|(carbon 
emissions)|pollution) blamed ((for|to) 
global_warming)) 

((would|should|to|must) (control|reduce|regulate|
regulating|release) greenhouse_gases) 

(((((global|some|sophisticated|complex|the) 
climate models)|climate models) (project|suggest|
predict)) that)  



Using induced structures to highlight 
interesting content? (Touileb and Salway 2014) 
¨  Patterns that are unusually frequent in a particular blog can 

give insights into its content, for example: 

(the (causes|effects) | (consequences|impacts) ((of|for) 
climate change))): 460 - the impacts of climate change 
(224), the effects of climate change (203) ,  the 
consequences of climate change (29), the causes of climate 
change (4) 

((developing|poor) countries): 1172 - developing 
countries(1061), poor countries (111) 

((to (combat|minimize|tackle)) climate change): 130 - to 
tackle climate change (72), to combat climate change (57), 
to minimize climate change (1)  

((you|we) (can|should)): 590 -  we can (302), you can 
(196), we should (84), you should (8)  



Using induced structures for infromation 
extraction (Salway, Touileb and Tvinnereim 2014) 

(COUNTRY ((supported|opposed) by) COUNTRY) 

This induced pattern was used to extract data about country 
relations. 

(COUNTRY (said|noted|recommended|explained|
responded|stressed|questioned|addressed|reiterated|
reported|urged|amended|invited…))  

(COUNTRY ((clarified|urged|reported) that) 

(COUNTRY ((presented|demanded|outlined|favored (the|
a))  

These patterns were used to extract statements relating to 
countries’ positions. The statements were grouped by country and 
scaled. 



Dyads of support and opposition 



Scale of climate change statements 

Austria (-2.38), Belgium, Germany, the UK, 
Switzerland, the US, Canada, Australia, Norway, 
France, Russia, New Zealand, Japan (-.62) ,Papua 
New Guinea (-.26), Tuvalu, Peru, Mexico, Brazil, 
Argentina, Malaysia, South Korea, Colombia, Saudi 
Arabia, Chile, Kuwait, Nigeria, Grenada, Uganda, 
Bangladesh, China, Egypt, the Philippines, South 
Africa, Indonesia, Venezuela, Iran, Bolivia, Barbados, 
India, Algeria (1.44) 





Summary 

¨  Bigger and more diverse material à  
 need data-driven techniques that highlight 
 unusual textual patterning, i.e. interesting content 

¨  Some useful data-driven techniques already, from 
text mining and corpus linguistics, but these do not 
capture much linguistic structure and meaning à 

 “local grammar induction” may complement these 


